

Published on Web 09/29/2004

Dihydrogen Activation by a Diruthenium Analogue of the Fe-Only Hydrogenase Active Site

Aaron K. Justice, Rachel C. Linck, Thomas B. Rauchfuss,* and Scott R. Wilson

Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801

Received July 23, 2004; E-mail: rauchfuz@uiuc.edu

Hydrogenases, enzymes that have been recognized since the 1930s, have come into sharp focus because the unusual nature of their active sites imply mechanistically unusual pathways.^{1,2} The blossoming molecular biology of the hydrogenases coincides with intense research on dihydrogen ligands³ augmented by the topicality of the "hydrogen economy".⁴ The Fe–only hydrogenases have received particular recent attention because their active site structure^{5,6} (Figure 1), which resembles the iconic Fe₂(SR)₂(CO)₆, is amenable to synthetic modeling. A particular challenge to modeling is the distal iron, where proton reduction is proposed to occur via a *terminal* hydrido intermediate.

The diiron site has been studied extensively by synthetic modeling and theoretical experiments.¹ Models with bridging hydride ligands can been prepared via the protonation of the FeI-Fe^I bond in $[Fe_2(SR)_2(CO)_4L_2]^z$ (L₂ = (PMe₃)₂, z = 0; L₂ = $(PMe_3)(CN)$, z = 1-).^{7,8} Although the resulting hydrides $[Fe_2(SR)_2$ - $(\mu$ -H)(CO)₄L₂]^{(z+1)+} appear not to adopt biologically relevant stereochemistry, they efficiently catalyze the reduction of protons to dihydrogen.^{7,9} Interaction between diiron dithiolates and H₂ is further implicated in the photochemical H₂/D₂O exchange catalyzed by $[Fe_2(S_2C_3H_6)(\mu-X)(CO)_4(PMe_3)_2]^+$ (X = H, SMe).^{8,10} Despite these advances, no models with terminal hydride or dihydrogen ligands have been produced. We have begun to investigate this and related challenges through studies on diruthenium systems of the type Ru₂(S₂C₃H₆)(CO)₄(PR₃)₂.^{11,12} Experiments described below demonstrate that such diruthenium dithiolates oxidatively add H₂ and that the resulting dihydrido species can be protonated to form a dihydrogen complex. Binuclear dihydrogen complexes are rare.^{3,13}

We chose to examine the photohydrogenation of $Ru_2(S_2C_3H_6)$ - $(CO)_4(PCy_3)_2$ (1, $Cy = C_6H_{11}$). As in previous studies on related diiron dithiolates, phosphine ligands were deployed to simulate the electronic role of the cyanide donor ligands found in the enzyme. ³¹P NMR studies show that 1 is dynamic in solution at room temperature apparently resulting from the rapid interconversion of two rotamers, although this detail is the topic of continuing studies. UV-photolysis of toluene solutions of 1 under a flowing atmosphere of H₂ gave the dihydride $Ru_2(S_2C_3H_6)(\mu-H)(H)(CO)_3(PCy_3)_2$ (2), Scheme 1. The ¹H NMR spectrum of 2 exhibits well-resolved signals for the bridging and the terminal hydride ligands, coupled to two and one ³¹P centers, respectively. The ³¹P NMR spectrum shows that the phosphine ligands are nonequivalent. Crystallographic characterization supports the NMR data, revealing that the phosphine ligands have moved from diaxial positions in 1 to mutually trans basal positions in dihydride 2 (Figure 2). The isomerization is perhaps driven by steric interactions between the dithiolate backbone and the axial ligand sites; such interactions would be aggravated by opening of the RuSRu angles, which accompanies the oxidative addition. Spectroscopic measurements indicate that the ethanedithiolate $Ru_2(S_2C_2H_4)(CO)_4(PCy_3)_2$ also adds H₂ similarly. The mutually trans stereochemistry of the hydride

Figure 1. Proposed active site (H_{red} state) of the Fe-only hydrogenase enzyme based on crystallographic analyses.¹ X is assumed to be NH_n but could also be CH₂ or O.⁶

ligands is proposed to arise intramolecularly from an initially formed cis-dihydride via a pathway akin to the isomerization of $[(C_5H_5)-Ru(PR_3)_2(H_2)]^+$ into *trans*- $[(C_5H_5)Ru(PR_3)_2(H)_2]^+$.¹⁴ In solution, **2** does not exchange with D₂O or D₂. The Ru–Ru distance increases by a substantial 0.2 Å from 2.6875(8) to 2.8970(9), whereas protonation of the Fe₂(SR)₂(CO)₄L₂ systems elongates the Fe–Fe distance by only 0.05 Å.⁷

The photoaddition of H₂ is representative of a potentially general reaction whereby substrates oxidatively add to the diruthenium species with loss of CO. Photolysis of a toluene solution of **1** and HOTs (HOSO₂C₆H₄Me) gave a single isomer of hydride Ru₂-(S₂C₃H₆)(μ -H)(OTs)(CO)₃(PCy₃)₂ (**3a**) as assigned by ¹H and ³¹P NMR measurements. Similar reactivity was observed for HCl and HSPh to give the corresponding chloro and thiophenolato complexes **3b** and **3c**. In the case of the HOTs reaction, IR and NMR measurements indicate that the conversion commences with (non-photochemical) protonation of the Ru–Ru bond to give [Ru₂-(S₂C₃H₆)(μ -H)(CO)₄(PCy₃)₂]OTs. Photodissociation of CO from this cation permits coordination of the counteranion. Spectroscopic measurements indicate that the coordination geometries of **3a**–**3c**

Figure 2. Molecular structures of $Ru_2(S_2C_3H_6)(CO)_4(PCy_3)_2$ (1) (magenta) and $Ru_2(S_2C_3H_6)(\mu-H)(H)(CO)_3(PCy_3)_2$ (2) (black) with thermal ellipsoids set at the 35% probability level. Solvate and H atoms were excluded for clarity; Ru-H positions were refined. Selected distances (Å) and angles (deg) for 2 are as follows: Ru(1)-Ru(2), 2.8970(9); Ru(1)-H(1), 2.01(3); Ru(2)-H(1), 1.77(3); Ru(2)-H(2), 1.57(3); Ru(1)-S(1), 2.419(2); Ru(1)-S(2), 2.415(2); Ru(2)-S(1), 2.4198(19); Ru(2)-S(2), 2.4193(18); Ru(1)-P(1), 2.389(2); Ru(2)-P(2), 2.316(2); Ru(1)-C(40), 1.913(7); Ru(1)-C(41), 1.845(9); Ru(2)-C(42), 1.854(7); Ru(1)-S(1)-Ru(2), 73.55(6); Ru(1)-S(2)-Ru(2), 73.64(5); Ru(2)-Ru(1)-H(1), 36.9(10); Ru(1)-Ru(2)-H(1), 43.0(11); Ru(1)-Ru(2)-H(2), 135.7(17); H(1)-Ru(2)-H(2), 178(2).

are analogous to that for 2. The structure of chloride 3b was confirmed crystallographically. Addition of HCl to 2 afforded 3b and H₂.

Interesting results come from protonation experiments that probe the formation of the corresponding dihydrogen complex. Treatment of **2** with $[H(OEt_2)]BAr_4^F (Ar^F = C_6H_3-3,5-(CF_3)_2)$ in acetone- d_6 solution (25 °C) resulted in the formation of free H₂ and HD, detected by ¹H NMR spectroscopy. Acetone is proposed to displace an incipiently formed H₂ ligand, and the HD arises similarly but after the H/D exchange between $[H(OEt_2)]BAr^{F_4}$ and acetone- d_6 . NMR data of the product are consistent with $[Ru_2(S_2C_3H_6)(\mu-H) (CO)_3(PCy_3)_2(OCMe_2-d_6)]^+$. ¹H NMR analysis for the protonation of 2 in CD_2Cl_2 solution indicates formation of $[Ru_2(S_2C_3H_6)(\mu -$ H)(CO)₃(PCy₃)₂(H₂)]⁺ (4, Scheme 1). In particular, we observe a ³¹P-coupled triplet at δ –13.2 and a broad singlet of intensity 2H at δ -5.9 (T_1 at 25 °C = 30 ms, 11.7 T). ¹H NMR data for 4- d_1 , derived from the reaction of 2 with $[D(OEt_2)]BAr^F$ gave a triplet at δ -6.1 with ${}^{1}J_{H-D}$ of 31 Hz, indicative of a H–D distance of 0.90 Å.³ We observed no deuterium incorporation into the μ -H ligand, even after several days at room temperature. Solutions of $[Ru_2(S_2C_3H_6)(\mu-H)(H_2)(CO)_3(PCy_3)_2]^+$, which are stable for several

days at room temperature, catalyze the exchange between D₂ and H₂, a characteristic reaction of hydrogenases.^{1,2}

In summary, we report the following advances in hydrogenase modeling: (i) the first example of H_2 addition to a hydrogenase model, (ii) demonstration that the terminal hydride is more hydridic than the bridging hydride, and (iii) first dihydrogen complex of a hydrogenase active site model. The $Ru_2(SR)_2(CO)_{6-x}L_x$ complexes are sufficiently diverse and manipulable^{11,15} that it should be possible to prepare a range of hydride derivatives and probe their reactivity. We anticipate that these developments will guide the preparation of the corresponding diiron model systems and a fuller understanding of the underlying enzymology.

Acknowledgment. This research was supported by NIH. We thank Borislava Bekker for experimental assistance and Dr. Joshua Lawrence for reading the manuscript.

Supporting Information Available: Preparative details, spectroscopic data, and crystallographic analyses. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (1) Frey, M. ChemBioChem 2002, 3, 153-160. Evans, D. J.; Pickett, C. J. Chem. Soc. Rev. 2003, 32, 268-275
- Volbeda, A.; Fontecilla-Camps, J. C. Dalton Trans. 2003, 4030-4038. Kubas, G. J. *Metal Dihydrogen and σ-Bond Complexes*; Kluwer Academic, Plenum Publishers: New York, 2001.
- (4) Basic Research Needs for the Hydrogen Economy: Report of the Basic Energy Sciences Workshop on Hydrogen Production. Storage, and Use. (5) Peters, J. W., Lanzilotta, W. N.; Lemon, B. J.; Seefeldt, L. C. Science 1998, 282, 1853–1858.
- (6) Nicolet, Y.; de Lacey, A. L.; Vernede, X.; Fernandez, V. M.; Hatchikian, E. C.; Fontecilla-Camps, J. C. J. Am. Chem. Soc. 2001, 123, 1596-1601.
- (7) Gloaguen, F.; Lawrence, J. D.; Rauchfuss, T. B.; Bénard, M.; Rohmer, M.-M. Inorg. Chem. 2002, 41, 6573-6582. Savariault, J.-M.; Bonnet, J.-J.; Mathieu, R.; Galy, J. C. R. Hebd. Seances Acad. Sci., Ser. C 1977, 284 663-665
- (8) Nehring, J. L.; Heinekey, D. M. Inorg. Chem. 2003, 42, 4288-4292
- (9) Gloaguen, F.; Lawrence, J. D.; Rauchfuss, T. B. J. Am. Chem. Soc. 2001, 123, 9476-9477
- (10) Zhao, X.; Georgakaki, I. P.; Miller, M. L.; Yarbrough, J. C.; Darensbourg, M. Y. J. Am. Chem. Soc. 2001, 123, 9710-9711
- Cabeza, J. A.; Martinez-Garcia, M. A.; Riera, V.; Ardura, D.; Garcia-(11)Granda, S.; Van der Maelen, J. F. Eur. J. Inorg. Chem. 1999, 1133-1139.
- (12) Hossain, G. M. G.; Hyder, M. I.; Kabir, S. E.; Abdul Malik, K. M.; Miah, M. A.; Siddiquee, T. A. Polyhedron 2003, 22, 633-640
- (13) Hampton, C. R. S. M.; Butler, I. R.; Cullen, W. R.; James, B. R.; Charland, J. P.; Simpson, J. *Inorg. Chem.* **1992**, *31*, 5509–5520.
 (14) Chinn, M. S.; Heinekey, D. M. J. Am. Chem. Soc. **1990**, *112*, 5166–
- 5175
- (15) Shiu, K.-B.; Wang, S.-L.; Liao, F.-L.; Chiang, M. Y.; Peng, S.-M.; Lee, G.-H.; Wang, J.-C.; Liou, L.-S. Organometallics **1998**, *17*, 1790–1797. Cabeza, J. A.; Martinez-Garcia, M. A.; Riera, V.; Ardura, D.; Garcia-Granda, S. Organometallics **1998**, *17*, 1471–1477.

JA0455594