Direct Observation of Ligand-Centered Redox in $Cp*_2Rh_2(\mu-C_2S_4)Cl_x$ (x = 2, 0)[†]

Geoffrey A. Holloway and Thomas B. Rauchfuss*

School of Chemical Sciences, University of Illinois, Urbana, Illinois 61801

Received February 4, 1999

The coordination chemistry of tetrathiooxalate (tto) has received intermittent attention for two decades.^{1–10} Complexes of this ligand occur in a range of oxidation states, the limits of which can be described as $C_2S_4^{2-}$ ($r_{C-C} \sim 1.46$ Å)¹¹ and $C_2S_4^{4-}$ ($r_{C-C} \sim 1.35$ Å).¹ Thus, somewhat like NO and SO₂, C_2S_4 is a facultative ligand with the capability of absorbing or releasing redox equivalents. Unlike SO₂ and NO, however, C_2S_4 is strictly binucleating.^{1–10} This combination of properties—electronically facultative and binucleating—is of interest in the design of functional multimetallic ensembles wherein ligands contribute to the redox properties of *pairs* of metals. In this report we demonstrate that both the metal and the C_2S_4 subunits participate in the redox cycle of an $M_2C_2S_4$ unit. This work should stimulate further studies on the coordination chemistry of $C_2S_4^{2-}$, for which an alternative synthesis recently has been reported.¹²

Treatment of methanol slurries of $[Cp*RhCl_2]_2$ with $(NEt_4)_2C_2S_4$ efficiently affords the new compound $[Cp*RhCl]_2(\mu-C_2S_4)$ (1· Cl₂) (eq 1).¹³ Spectroscopic and crystallographic analyses of this

dark green material established a transoid C_{2h} structure (Figure

 † This paper is dedicated to Professor H. Werner on the occasion of his 65th birthday.

- Maj, J. J.; Rae, A. D.; Dahl, L. F. J. Am. Chem. Soc. 1982, 104, 4278– 4280.
- (2) Broadhurst, P. V.; Johnson, B. F. G.; Lewis, J.; Raithby, P. R. J. Chem. Soc., Chem. Commun. 1982, 140–141.
- (3) Hansen, L. K.; Sieler, J.; Strauch, P.; Dietzsch, W.; Hoyer, E. Acta Chem. Scand. 1985, A39, 571–591.
- (4) Bianchini, C.; Mealli, C.; Meli, A.; Sabat, M.; Zanello, P. J. Am. Chem. Soc. 1987, 109, 185–198.
- (5) Harris, H. A.; Rae, A. D.; Dahl, L. F. J. Am. Chem. Soc. 1987, 109, 4739–4741.
- (6) Vicente, R.; Ribas, J.; Alvarez, S.; Segui, A.; Solans, X.; Verdaguer, M. Inorg. Chem. 1987, 26, 4004–4009.
- (7) Reynolds, J. R.; Lillya, C. P.; Chien, J. C. W. Macromolecules 1987, 20, 1184–1191.
- (8) Yang, X.; Doxsee, D. D.; Rauchfuss, T. B.; Wilson, S. R. J. Chem. Soc., Chem. Commun. 1994, 821–822.
- (9) Pullen, A. E.; Zeltner, S.; Olk, R. M.; Hoyer, E.; Abboud, K. A.; Reynolds, J. R. Inorg. Chem. 1996, 35, 4420–4426.
- (10) Pullen, A. E.; Zeltner, S.; Olk, R. M.; Hoyer, E.; Abboud, K. A.; Reynolds, J. R. Inorg. Chem. 1997, 36, 4163–4171.
- (11) Lund, H.; Hoyer, E.; Hazell, R. G. Acta Chem. Scand. 1982, B36, 207-209.
- (12) Breitzer, J. G.; Chou, J.-H.; Rauchfuss, T. B. Inorg. Chem. 1998, 37, 2080–2083.
- (13) (Cp*RhCl)₂(C₂S₄) (1·Cl₂). To a stirred slurry of 0.22 g (0.36 mmol) of (Cp*RhCl₂)₂ in 20 mL of MeOH was added a solution of 0.17 g (0.40 mmol) of (NEt₄)₂(C₂S₄)¹² in 20 mL of MeOH. The slurry immediately turned from red-orange to dark green; after ~1 min, much precipitation appeared. After 5 min, solvent was removed under reduced pressure. The dark green solid was washed with 30 mL of H₂O, 2 × 15 mL of MeOH, and 2 × 10 mL of Et₂O and dried in air. Yield: 0.19 g (76%). Anal. Calcd (found) for C₂₂H₃O₃Cl₂Rh₂: C, 37.78 (37.48); H, 4.37 (4.32). ¹H NMR (500 MHz, CD₂Cl₂): *δ* 1.73 (Me₅C₅). ¹³C NMR (150 MHz, CD₂Cl₂): *δ* 9.33 (*Me*₅C₅), 100.27 (Me₅C₅, J_{Rh-C} 6.9 Hz), 234.71 (C₂S₄). UV-vis (CH₂Cl₂): 30, 446, 656 nm.

1). The S₂C–CS₂ distance of 1.447(13) Å is consistent with the C₂S₄^{2–} formulation, i.e., [Cp*Rh^{III}Cl]₂(μ -C₂S₄^{-II}). The intense green color is ascribed to a low-energy Rh-to-C₂S₄ charge-transfer transition. We also prepared the analogue [Cp*IrCl]₂(μ -C₂S₄) (**2**·Cl₂), whereas [(C₆R₆)RuCl]₂(μ -C₂S₄) has not yet been isolated in pure form. Many of the previous examples of organometallic C₂S₄ complexes were prepared by the reductive coupling of CS₂,^{1,2,4,5} as opposed to the direct metathesis reaction reported here.

Treatment of a THF suspension of $1 \cdot Cl_2$ with LiBHEt₃ or Na-(Hg) affords blue [Cp*Rh]₂(μ -C₂S₄) (1) (eq 2), a diamagnetic compound.¹⁴ This reaction has been extended to the analogous Ir

complex (2), which is also diamagnetic. Crystallographic analysis established that the $Rh_2C_2S_4$ core in **1** has D_{2h} symmetry (Figure 2). The diamagnetism of 1 and 2 is of interest because the $1e^{-1}$ M redox process should generate a $[d^7]_2$ product. The diamagnetism of these species could be explained if the metals were strongly coupled through the π -system of the C₂S₄ bridge so that the ground electronic state would not be describable in terms of isolated monometallic units. This convenient conclusion appears to be incorrect. The structural analysis shows that the S_2C-CS_2 distance in **1** is 0.1 Å shorter than that in $1 \cdot Cl_2$ (1.342(8) vs 1.447(13) Å, respectively); thus, reduction strongly affects the oxidation state of the C₂S₄ ligand. In other words, the structural data show that the redox process is best described as [Cp*Rh^{III}-Cl]₂(μ -C₂S₄^{-II}) to [Cp*Rh^{III}]₂(μ -C₂S₄^{-IV}). From this perspective, the metal centers in 1 more closely resemble those in Rh^{III} dithiolates, e.g., Cp*Rh(SC₆F₄-*p*-H)₂.¹⁵ Compound **1** behaves like a saturated Rh(III) derivative in the sense that it does not bind Lewis bases, including CO. Although formally unsaturated, the Rh centers in 1 are stabilized by S-to-metal π -bonding, as observed in the aforementioned Rh dithiolato complex and Cp*2- $Ir_2(\mu - S)_2(PMe_3)$.¹⁶

Treatment of **1** with 1 equiv of Cl_2 regenerates **1**· Cl_2 . Under mild conditions, the $Rh_2C_2S_4$ center in **1**· Cl_2 does not suffer degradation by Cl_2 ; however, under more aggresive conditions,

- (15) Garcia, J. J.; Torrens, H.; Adams, H.; Bailey, N. A.; Shacklady, A.; Maitlis, P. M. J. Chem. Soc., Dalton Trans. 1993, 1529–1536.
- (16) Dobbs, D. A.; Bergman, R. G. Inorg. Chem. 1994, 33, 5329-5336.

^{(14) (}Cp*Rh)₂(C₂S₄) (1). To a stirred slurry of 0.18 g (0.26 mmol) of (Cp*RhCl)₂(C₂S₄) in 30 mL of THF under an Ar atmosphere was added 0.60 mL of a 1.0 M solution (0.60 mmol) of LiBHEt₃ in THF. After ~1 min, the slurry turned from dark green to dark blue. Solvent was removed under reduced pressure to ~5 mL after 7.5 h. Addition of 50 mL of hexane was followed by filtration. The dark blue solid was washed with 5 × 10 mL of MeOH and 10 mL of Et₂O and was dried in vacuo. Yield: 88 mg (55%). Anal. Calcd (found) for C₂₂H₃₀S₄Rh₂: C, 42.04 (41.85); H, 4.81 (4.85). ¹H NMR (500 MHz, CD₂Cl₂): δ 1.95 (Me₅C₅). ¹³C NMR (150 MHz, CD₂Cl₂): δ 10.79 (*Me*₅C₅), 97.37 (Me₅C₅, J_{Rh-C} 6.9 Hz), 169.45 (C₂S₄). UV−vis (CH₂Cl₂): 688 nm.

Figure 1. Structure of the non-hydrogen atoms in $(C_5Me_4Et)_2Rh_2Cl_2-(\mu-C_2S_4)$ (**1**·Cl₂) with thermal ellipsoids set at the 50% probability level. The molecule rests on a crystallographic inversion center. Important bond lengths and angles are Rh(1)–Cl(1), 2.403 Å; Rh(1)–S(1), 2.317 Å; Rh(1)–S(2), 2.334 Å; and Cl(1)–Rh(1)–S(2), 90.1°.

Figure 2. Structure of the non-hydrogen atoms in $Cp^*_2Rh_2(\mu-C_2S_4)$ (1) with thermal ellipsoids set at the 50% probability level. The molecule rests on a crystallographic inversion center. Important bond lengths are Rh(1)–S(1), 2.2432 Å, and Rh(1)–S(2), 2.2517 Å.

excess Cl₂ strips the C₂S₄ ligand from the bimetallic unit to afford [Cp*RhCl₂]₂. The two-electron nature of the chlorine addition prompted a search for the half-oxidized species Cp*₂Rh₂Cl(μ -C₂S₄). Treatment of **1** with ~0.5 equiv of Cl₂ consumed 0.5 equiv

of 1. However, the yield of $1 \cdot Cl_2$ was low, and we were unable to identify the components of the resulting mixture of Cp*-containing products.

The complexities associated with the partial chlorination of **1** can be understood, in part at least, in the context of the electrochemical properties of **1**. The cyclic voltammetry of **1** is unexceptional in the anodic direction, showing a reversible reduction process at -1.36 V (vs Ag/AgCl), corresponding to the formation of **1**⁻. More interesting, the oxidation of **1** at 0.385 V triggers a coupled electrochemical-chemical sequence (EC process). Thus, oxidation of **1** is irreversible because the resulting cation **1**⁺ is associated with a chemical process that we propose is the dimerization of **1**⁺.¹⁷ The corresponding reduction of $[1^+]_2$ occurs at -0.44 V; it is clear from the CV that this reduction regenerates **1**.

In summary, we have for the first time elucidated the structural chemistry of a $M_2C_2S_4$ core in two oxidation states. The rich redox properties of the $M_2C_2S_4$ core encourage the further development of reaction centers based on the $M_2C_2S_4$ core. The electrochemical results indicate that this $C_2S_4^{4-}$ complex is susceptible to condensation processes, implicating novel bonding modes for C_2S_4 .

Acknowledgment. This research was funded by the Department of Energy (DEFG02-96ER45439). G.A.H. is supported by a graduate fellowship from the Fannie and John Hertz Foundation.

Supporting Information Available: Crystallographic information and tables of atomic parameters, bond lengths, and bond angles for $1 \cdot Cl_2$ and 1; also, CV of 1 showing EC process. This material is available free of charge via the Internet at http://pubs.acs.org.

IC990150E

⁽¹⁷⁾ Oxidation of 1 with 1 equiv of [CpFe(C₅H₄C(O)CH₃)]BF₄ followed by anion metathesis with NaBPh₄ (in MeOH solution) afforded [1⁺]₂(BPh₄)₂. The ¹H NMR spectrum of [1⁺]₂(BPh₄)₂ confirms its empirical formula, high symmetry (one Cp* signal), and diamagnetism.